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Chapter 1: INTRODUCTION

Millimeter-wave systems have received increased interest in recent years, and serve a broad spec-

trumn of applications. Many of these systems employ receiver and transmitter sub-systems. The use of

integrated cruts at millimeter-wave frequencies is essential to meet performance. cost, sine and other

constraints. The integration of millimeter-wave transmitters and receivers is of primary importance.

It is desirable to place as many components as possible; for example, amplifiers, filters, switches, anten-

nas; on one substrate or waveguide medium. Millimeter-wave integrated circuits are receiving consid-

erable exposure [1, [2].

This thesis considers several important elements for use in millimeter-wave integrated circuits.

Two different wave-guiding media are considered: fin-line, which is a member of the metallized sub-

strate family, and image guide, which is a member of the rectangular dielectric waveguide family.

Filter-type structures, which consist of a series of discontinuities, are studied. These structures

are used in matching elements for active devices and antennas, radiating elements, and as filters. Some

of these components have been studied [3147].

The solution of the discontinuity problem is therefore of particular importance. A suitable char- -

acterization for a single discontinuity permits the analysis of some series of discontinuities via general-

ized scattering and transmission matrices.

The uniform fin-line structure is analyzed in Chapter 2. This analysis gives propagation con-

stants, characteristic impedances and mode functions.

Chapters 3 and 4 deal with two different approaches for solving the fin-line discontinuity prob-

lem. A moment method is used to study a single and an infinite periodic array of discontinuities in

Chapter 3. An iterative method and a variational approach are used to solve the single fin-line discon-

tinuity problem in Chapter 4.

An image guide grating filter is studied in Chapter 5. Theoretical and experimental curves for the

insertion loss characteristic are given....

. . .. . . . . . . .. ... 
%



- . --- - .-46-o

2

CHAPTER 2: UNIFORM FIN-LLNE ANALYSIS

2.). Introduction

The unilateral fin-line structure shown in Fig. 2.1. is studied in this thesis. It consists of a metal

cladding on one side of a dielectric substrate, which is mounted in a shielded enclosure. The metalli-

zation will be assumed infinitesimally thin. A generalized guide may consist of some combination of

dielectrics and metallized surfaces.

A number of recent papers have used the spectral domain formulation, in conjunction with a

moment method, to analyze the In-line [814121 In particular, Galerkin's method has been shown to

be satisfactory.

Several of these authors have analyzed the fin-line structure by expressing the fields in terms of

scalar potential functions in each transverse region, and then applying the appropriate boundary con-

ditions to obtain the required coupled equations [81 [91 [111 This approach is satisfactory when the

structure can be analyzed as a two-region problem, for example, symmetric bilateral fin-line. How-

ever, the unilateral fin-line is a three-region problem, which results in prohibitive algebra. For a

larger number of regions the problem is compounded.

An alternative approach is to use the transverse resonance technique in the spectral domain (10],

[121 This method greatly simplifies the formulation, and will be utilized in the work presented here.

The uniform fin-line problem is formulated in Section 2.2. Details of the formulation procedure

and the numerical methods used in the solution, namely, the moment method, are given. It is neces-

sary to obtain data for the propagation constants, characteristic impedances and the mode functions-

Theoretical and experimental results are given in Section 2.3.

2.2. Spectral Domain Formulation for Fin-Line

Waveguides such as fin-line and microstrip are most simply formulated in the spectral domain.

This involves using the Fourier series representation of all field quantities in the transverse direction,

. . . . . . . . . . . . . .

... :.
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Figure 2.1. Unilateral fin-line structure.
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parallel to the metallization. This is the x-direction for the geometry of Fig. 2.1. The transform pair

for quantity A is defined as

A (k,,y) f A(x.y)e-'-' dx (2.1a)
0

A ixky)y = )e-"k k.: (2.1b)

where k,- n. =0O,± 2,
2b

The continuous Fourier Transform may be used to find these quantities at the discrete k, values.

Without the metallization on the dielectric surface, TE-to-y and TM-to-y modes propagate. The

fin-line modes can be considered as superpositions of these modes.

An analogy is now drawn with a plane wave incident on a dielectric boundary at some angle.

If the fields are decomposed into components parallel and perpendicular to the propagation direction.

no coupling between these components will occur at the interface. The resulting equations have been

decoupled.

A similar concept may be employed in the fin-line case. Equation (2.1b) represents a superposi-

tion of plane waves propagating in the (k, x + k, z) direction, which will be called the u-direction.

Consider the orthogonal (uv) coordinate system in the (xz) plane, as shown in Fig. 2.2(a). The fol-

lowing coordinate transformation relationships hold for quantity a

a, = a. N: + a. N. (2.2a)

a,, -a: Nx + a, N

a: = a, N. + a, N. (2.2b)
'z = a. N z - a,, N.

.44

.....
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Figure 2.2. (a) (X~z) and (uv) coordinate system, (b) Equivalent transverse resonance circuits for
analyzing the fin-line structure. 4
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(2.3)

N-

The field quantities expressed in the (uv) coordinate system allow a decoupled transverse reso-

nance analysis. The two equivalent transmission lines for TM to y and u CE, ,E.,H,) and TE to y

and u (H,, S, ,H,,) are shown in Fig. 2.2(b). The wave impedances in the y-direction are

ZTES E~*~* (2.4)

where Yi = k 2 + k."? - k~

Spectral domain relationships between the fin current densities and the slot fields may be

formed simply from the transmission line equivalent circuits. The relationships are

J. (k, J + 2d) Y,. E,,(k,, L,+ 2d) (2-5a)

(kJ d , (,J d (2-5b)

1ZTM J + Zrm 2 tanhV 2L I)tanh(2y id)where Ym ZTM2 tanhoy212) +ZTM I (ZTM 2 tanh(f 2 1) + ZTM I tanh(2Vy d)

1______ ZTE I + ZT 2 tah( 2 t )taDnh(2VyId)

2 TM tarih(y21 2) +T I1 (ZTE 2 tanhOPvi 1) + ZTE I tanh(2-y d)

Transformation of Eq. (2.5) back into (xz) coordinates results in two coupled equations, which

are

Jx (k~,L: +2d)(N 2 Ym +Ni 2Y,) E,(k.l +2d)+NN:(Y, -Y)Ez(k,, 1 +2d) (2.6a)

J":(k j I + 2d) = N.,N,(Ym. - Yd)E (k, j 1 +2d) + (N 2ym + N, 2Ye)Ez,(kzt + 2d). (2.6b)

Equation (2.6) is a spectral domain relationship between the fin currents and the slot fields. This

* may be written in the form
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YZA YZZ E: ,-
Ii I. Y. I i. I= Ii.7I

where the Y-matrix is a type of dyadic Green's function. Only minor alterations to the transmission

line equivalent circuits are required to analyze an arbitrary number of dielectric layers and metal-

lized surfaces.

The moment method may be used to obtain a satisfactory numerical solution to Eq. (2.6). A

matrix equation may be obtained by the application of Galerkin's method (testing functions being the

same as the basis functions) to Eq. (2.6). The slot fields are expanded in terms of a suitable set of basis

* functions, which satisfy the edge condition, and are readily Fourier transformable. The representa-

tion with P basis functions is

PE.,X W a,, t,(X) (2.8a)
p=1

a E-W b,) = % U Iq ( (2.8b)
q=l

A suitable set of functions is an orthogonal polynomial set, modified by the edge condition. The

functions used are

Cos [ Z . (X -SW 2
pp = 1.2,3,...

2w12(x -s~W s- <x <s+2 (2.9)

2 2
S2 )=, q =1,2,3..

2(x 1 (

otherwise.
=0

J'1

,. . .. :.', .. ,.. ..... ,..,..... ., , , .. .,.: . ,,.,..< .,.., ,. , ., ..., -.: .,.,.. ,,.... . ... -,. p ..,..[.'...,.,. ,.....
%p *. *.... ,*ii,*%, . , , _ ."- . . . . .'W € ,. ....-. "_ , _... . , . ..- .-,_."¢'...._.",', .. .._'._,_.-- .:.



Frequently. (x) = P. (s,w) is used. These functions are shown in Fig. 2.3 and Fig. 2.4.

For a centrally located slot, only even and odd 7) terms (with respect to the center of the slot)

are required. ie, p -0,2,4,, q -2,4,6,.

The matrix equation is formed using the inner product.

<xj(k, ).,i(k1 )> = ) F: (k), );(k,) (2.10)
/n =~,--Go

where k, =2nb2b"

Of course, the summation must be truncated to a finite number of terms. The resulting homogeneous

equation is of the form

[A) [x]=O. (2.11)

For P E, basis functions and Q E. basis functions, A is a (P+Q, P+Q) matrix and x a (P+Q,I) vector

containing the unknown basis function coefficients. The eigenvalue solutions for k. are found by

solving det (A) - 0. The coefficient matrix x may then be found. P+Q-1 unknowns may be found in

terms of one unknown. Thus the approximate E. and E.- eigenfunctions in the slot can be found.

The fields over the complete waveguide cros-section, and hence the mode functions, may be found by

returning to the equivalent transverse resonance circuits.

There is no unique definition for the characteristic impedance for non-TEM modes. A suitable

definition as discumed in [10,1 [13] is

="1Pr-- (2.12)

where V is the slot voltage and P the mode power. The slot voltage is given by

2

V. E. f E3 L+ 2d)dx. (2.13)

s2

The mode power is given by

. . . . . . . . . . . . . .. .. ,,-
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Figure 2.4. Basis functions for Ez (x) in the fin plane.
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P =1 -Re f f E,, ,y)H;(sy)- E,( xy)H:;(xy)dxdy (2.14)
00Q

Using Parseval's theorem, this may be expressed as .l ?

P --" Re f [i.,(k,, y).W;(k y) -i,( ,y),W,(k.,y)]dy .(2.15) ": i

and F, may be found in the (u.v) coordinate system as voltages and currents to the

equivalent transmission lines, giving

E .(k, k, y)) I ,)i*, k , y) (2.16a)

E,(k, , y)/H;(k,,, y) (/H:(k. y)N, +:(,,,y)N.). (2.16b)...

The y-integrals may be performed analytically. This approach simplifies the computation of the

mode power.

The fields for the nth mode may be expressed as

-(x,y,z)= ,(X1 y)e-AtZ + i=(XY)t - -  (2.17a)

R(x,yz) = g(X,y)C-*" + K=(Zy)e-*- x (2.17b)

where e'. and hn are transverse vector mode functions, and e-, and h, are longitudinal vector mode

functions. These mode functions, when normalized, satisfy the following orthogonality relation [14]

f f F, x ,,.ds=,,, "-'...

S

where 8n, is the Kronecker data which is defined by

1 n =m (2.18)Slim = 0 n Fm

o.~ .*

: -:.-.. : .. < .: z. ..< : . .. . .. ..-..............,.,-..,........-....,-..,...........-..... .. ..
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2.3. Results and Discussion

For the purposes of this study, a centrally located slot will be considered. The techniques

presented can be used to analyze an arbitrary number of slots located anywhere in the shielded enclo-

sure.

Satisfactory approximate results for the propagation constant can be obtained by using

E P, (s ,w) and Ez 0. Upon investigation of the convergence of the propagation constant solu-

tions, two basis functions from Eq. (2.8) ( pl,3, q-2,4) give sufficient accuracy. A Orule of thumb!

for the number of spectral terms required in the inner-product of Eq. (2.9) is "-

X;(k 1 )Y(k,) , > 161, (2.19)
n -- N2 W

This indicates that more spectral terms are required for a larger waveguide width to slot width ratio

This number of basis functions gives good results without excessive computation time. Eigenvalue

solutions to Eq. (2.10) can be found by a course iteration to find approximate solutions, followed by

iterations using Newton's method.

The effective dielectric (U, = k,/ko2) constant results agree with Schmidt et aL 110 A com-

parison of the computed normalized wavelength with Knorr and Shayda [8] is given in Fig. 2.5.

Knorr and Shayda use a pulse approximation for E, in the slot.

Experimental propagation constants at E-band (76-82 GHz) have been obtained [15] Figures 2.6

and 2.7 give comparisons between the theory presented here and this experimental data. The agree- t.

ment is quite good. Additional propagation data, for propagating and evanescent modes, which will

be used in subsequent chapters, is presented in Figs. 2.8, 2.9 and 2.10. %f

The characteristic impedance, as defined by Eq. (2.12). is plotted for several cases in Figs. 2.11

and 2.12. A pulse representation of E, is used here. Note that the impedance increases with increas-

ing slot width.

The nature of the Green's function matrix Y is of importance when computing infinite summa-

tions and integrals in the spectral domain. The asymptotic form of Y is particularly important. For

-%%'.'

. . . . . .. . . . . . . . . . . . . . . . . . .
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60 70 80 90

frequency (GHz)

Figure 2.5. Phase constant curves for unilateral fin-line with a WR-12 waveguide shield.
I IA422 MM1 2 1.549 mm, 2d 0.254 mm, e, =21,.2b 2.556 mm, f =4GHz.
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2b 0. 140' w Theory
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a0

76 78 80 82
Frequency (GHz)
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Figure 2.7. Comparison of theoretical and experimental results for the effective dielectric constant
of fin-line in a WR-28 shield.
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Figure 2.11. Characteristic impedance for fin-line with a WR-28 shield using a pulse approxima-
tion for E,,. 1112= 3A429mm, 2d 0O.254 mm, e, 2.22, 2b =2.556 mm.
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large k: .. :..-

*lk-s-n : ¢ k-) L-(2.20)

and for large k,
t.,,

kdI d 3sgn (k,) (2.21)

dgn(k,) d 4 k., I+d s 6

*. where the c's and drs are constant coefficients.

The transverse vector mode functions are

;(x,y) f xe,(xy) + ye,(x,y) (2Za)

h(xy) xh, (xy) + yh ,(x,y) (2.22b)

These field components are plotted for a typical case in Figures 2.13 through 2.16. Notice that the

fields are confined to the region around the slot. The functions represent a single propagating mode.

The solutions for the propagation constant are very stable when a relatively small number of

basis functions and spectral terms are used. (i.e., a small number of spectral terms are required for

convergence in the propagation constant.) However, at least an order of magnitude more spectral

terms are required for convergence of the basis function coefficients. Also, an increase in the number

of basis functions necessitates an increase in the number of spectral terms.

It is therefore quite difficult to find a satisfactory representation for the propagating and evanes-

cent mode functions. The analysis of a number of fin-line problems requires the generation of a suit-

able set of orthogonal modes.

. . ...2
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Figure 2.13. Fin-line mode function I e. (xy )I
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Figure 2.15. Fin-line made function Iley (x 'y)I
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%:CHAFME 3. MOMEN7 METHOD ANALYSIS OF FIN-LINE DISCONTINUITIES

3.1. The Fi-Line Discontinuity Problem

Unilateral fin-line will be considered in the discontinuity analysis. The word "disontinuity'

* will mean a perturbation in the slot width. A step discontinuity is shown in Fig. M.a. The solution

of such a problem is metial for desig and analysis of many millimeter-wave components.

* Mode matching has been used, with ome succusto analyze fin-line discontinuities [4117M1161

[171 An analysis of an ifinite periodic arry of stubs has been published recently [181 This

approach utilizes a moment method.

This chapter considers moment method solutions which are applicable to a Variety of fin-line

discontinuities, including the single discontinuity of Fig. M.a, and the periodic array of Fig. 3.1b.

The formulation employed in this chapter reduces a three-dimensional scattering problem to a

two-dimensional spectral relationship in the plane of the fin. This technique employs the known

spectral Green's function. Y. A spectral domain formulation. which is an extension of the two-

dimnsinalanalysis of Chapter 2, is employed. Section 3.2 deals with the single discontinuity prob-

lemn and Section 3.3 considers the infinite periodic problem. Conclusions on these techniques are

drawn in Sectio 3A4

3.2. Theoretical Analysis for the Single Dicontinudry

The discontinuity of Fig. 3.2 will be considered. for this analysis. The technique is quite general,

and may be applied to other geometries. A series of disconitinuities, such as Fig. 3.2, is of interest in

-~ filtering and matching applications.

A spectral relationship in the *fin-plane may be written as a general extension of Eq. (2.6)
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Y Y(k.z 2 )(k., k)=(k 2,A, (3.1)

where

Zk,)o Y- -i:'i

E= i

I..The spectral variable k, is again discrete; k, =2n vI/2b, and kz is a continuous spectral variable for

the single discontinuity problem. Y is as for Eq. (2.7), with kz a spectral variable rather than an

• ...

eigenvalue.

A matrix equation can be obtained by applying the moment method to Eq. (3.1) with a two-

dimensional inner product defined by

<X1 (kk ,kAF,(k. ,k,)> = , f i(k,k2 ) ij(k 1,,kz)dkz. (3.2)

1-.

Ah speta in le sagain d ilrebe; cosdee n thi analyis dontiredu speftrationrisab eo

scattering parameters of the junction. Consider a three region problem, as shown in Fig. 3.2. the

fields in the A- and C- regions are assumed known, except for complex constants. In Fig. 3.2, a is

sufficiently Urge so that the evanescent modes are negligible in regions A and C The field distribu-

tions in regions A and C are found from a uniform slot analysis and are themselves a superposition of

basis functions. The slot fields in the B-region can be expressed as a superposition of suitable basis

functions. We can write

4"%"

.... .... .... ... .... .... .... ... .... .... -•
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E -EA + EB + E, (3.3)

where QIEiI Q: A.BC

EQ +E-. (3.4)

The (+) signifies forward traveling waves, and the (-) signifies negative traveling waves. Expressing

the B-region fields in terms of a sum of basis functions,

E a ', €, (x~z)::'

- T p (xiz) (3.5)
J_1

The fin current, 7, and the slot field, B, are orthogonal, and by Parseval's Theorem, J and E are

orthogonaL Therefore, the right-hand side of Eq. (3.1) will not contribute in the matrix equation. Of

course, the matrix equation will have a right-hand side which is due to the known incident field on

the junction (E). Applying a moment method to Eq. (3.1),

<L-YE. > + <f,. Y. > =0 (3.6)

<6.. > + <,o.YEz.> = 0.

This equation is of the form Ax - b. where x is the unknown containing the coefficients of the

bass functions. and b is due to the incident field which is known.

The reflection and transmission coefficients at z = a a can be related to the unknown basis

function coefficients in the B-region by integral relationships on these boundaries. Therefore, there are

I + J unknowns to be solved for.

The z-dependencies for the incident (f ) reflected (f r)and transmitted (f,)fields are

f i(z ) [ - _(z ) /""'

I, (Z) = [I_, -(Z)1t (3.7)

f'(Z)~~ = %'..-OI'

.- -

* .: & Cj ~ :* ... : . ~ *,-%..-..'%, . -'.
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The Fourier Transforms of these, upon application of the Weiner-Hopf technique (where a finite loss

is introduced) (191 become

j(k 1

j(k-
,(k,)= j _. - ,1( .) .:.

J , / k- -1 .'.

j(k: -02)Y

It should be noted that to reproduce the uniform solution from the formulation here, it is necessary to

consider the lossless case, where impulse functions are included in the transform of Eq. (3.7).

The efficient evaluation of the integral in Eq. (3.2) is quite difficult and of prime importance.

L
The inner product integral is of the form

dkz (3.9)

where i, j E xz and F(k.) and Yj have no real poles. The two integration contours used are

shown in Fig. 3.3. Figure 3.3a is for positive traveling waves and Fig. 3.3b for negative traveling

waves. The pole is located at the propagation constant for a given region. A good discussion of the

contour selection for many mode problems is given in Collin and Zucker [20 There are an infinite

number along the imaginary axis due to the evanescent modes. The location of these cannot be deter-

mined simply. Therefore, the integration contour cannot be closed. It is then necessary to evaluate

the principal value of the integral numerically. Davis and Rabinowitz (211 discuss methods of

approximate integration over infinite intervals. Unfortunately, the techniques generally used for

such integrals are not readily applied to this case. The kernel has a two-dimensional variation which

makes the application of asymptotic techniques very difficult. A satisfactory truncation point for the

integral must be selected to give an acceptable error. The method of foldover [221 may be applied.

This technique may be summarized by

. -- •

.......... ................... ,.............................. .....
= .. %..%-%, o',% ', % % %_'o% ', %, %.%.% - % . % . - - •% % % • ° .' " ,. .. . ..... .
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I(kz)

Re~kz) 
p

kn (k~z)

It Re(kz)

Figure 3.3. Ineron contours for inner product evaluation, (a) negative travelling wave,
(b) positive travelling wave.
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-f Fj(k-)dkz f F1 (k,)dk: + f F1 (k.)k + jv Res (-P1).

--C -01

+ f Fs(k,)dk, + jwRres (-P,). (3.10)
0

f F2 (k.)dkz f F(k.)dkz F F2 k, )dkz j 1w Res(-P 1)

f L F2 k )dk, +f k. + Fz(20s-k 2)Idkz

The new kernel becomes bounded at the location of the singularities in the old kernel. This

allows a more accurate approximation near the singularity and an increase in the speed of the compu-

- tation. The kernel is oscillatory in nature, which increases the difficulty of the numerical integration.

3.3. Numerical Results for the Single Discontinutity

E, is the dominant field component in the slot. It is, therefore, a satisfactory approximation to

- set Ez =0. Equation (3.6) then becomes

-<L -Y. 4 > =0 (3.12)

for 1 orthoonal toJ,

Now consider a single pulse approximation for E,, (z) so that E, can be written as

. . . ...
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E.,= (e-jpl +a ,P ") P.,( ,w,)(l -U._,(z))
+a 2e p1 (s,w 2>A..(z) (3.13)

where 1n and 02 are the propagation constants for the dominant mode for z < 0 and z > 0, respec-

tively. The testing functions used are

e(~Z2) = ,S~ P"

f 2(x,z) = P,(s,w 2) P.( -2 ,a)ej$. (3.14)

The integral in Eq. (3.2) has been evaluated numerically using both the IMSL routine DCADRE and

the trapezoidal scheme. A more efficient computer program can be written using the trapezoidal rule.

Integral limits of ± 15 1 with nineteen spectral terms in the k. summation prove to be adequate for

convergence. A trapezoidal integration with 700 points is suitable. The foldover method is used in

the integral evaluation.

The scattering parameters of the junction computed by this procedure are not stable with respect

to variations in the pulse length a. While somewhat reasonable results can be achieved for certain

cases, the approach of testing a semi-infinite unknown with a finite pulse does not give reliable

results.

If Iou is introduced into the basis functions of Eq. (3.13) and Galerkin's method is used in Eq.

(3.12), the poles move off the real k. axis. The unknowns are tested over the entire semi-infinite

region. The scattering parameters vary significantly as a function of the loss coefficient.

3.4. Theoretical Analysis for an Infuthe Periodic Array of DIscondmdes

A unit cell in an infinite army is shown in Fig. 3.4. The spectral relationship of Eq. (3.1) can be
applied to ths geometry. However. now k. takes on dscrete values .. ,

to ~- -'-*- oweer, k. n -. .-

. ... . . . . . . .
%] ~. . . . . . . ..- . . . . . . .S.-,

• , ..- -. ' . -, . -. -. -.. . . .. .. ~. . .. " • " . -. " -. .-.- .' .' .. .' , .. . . -.. - , ,,-. .., . . .. . ... .' . ' . .
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W, WI

Figure 3.4. Unit cell in an infinite periodic array of discontinuitie&
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A discussion of periodic structures is given in Collin and Zucker (201 Floquet's Theorem may

be used to relate the field quantities at z -a and za. The felds may be expanded in aFourier

series in the z-direction. For the E-field,

Eq(x,y.2)= E,.(xy)e-"N

I .2

aa

~~~+ an

A n the application of Eq. (3.1) to this geometry, field quantiie in the plane of the fin

(y = ~+ 2d ) are considered. E., and E. in this plane can be expanded in term of appropriate func-

tions. and a homogeneous equation of the form Ax -0 can then be obtained by using Galerkin's

method.

Consider a representation for E., and E. given by

E,(x~z E j 71J(XZ) (.6
j=1

The weighting for the discrete spectral terms is given by

a/2 2b

r(A )j- f (x~z e J(&x+ on zdx dz S

.12 2b

i~(k~,= j~f f i,(xz) ej"" +0 ' dx dz. (3.17) -

* The homogeneous; equation becomes
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'U j~l nj=1

1 1 (318

E,< 7,,YzEaCai> + E < q 0Yz fb i>=. q1,..J(.8

The solution of det(A) -0, where A is the operator matrix in Eq. (3.18), gives the solution for P,

Consider the (k. a , Pa) diagram shown in Fig. 3.5. Several coupled modes are shown in this

diagram. Stopbands occur when Pa equals an integral multiple of 7r. When Pia = w, coupling occurs

between the n- 0 Floquet mode and the n -- 1 mode. That is, there is coupling between a forward 4.-,

* traveling wave and a negative traveling wave. Note that the example in Fig. 3. is for a TEM wave

in a periodically loaded media which has no low-frequency cutoff.

LThe analysis outlined here is implemented numerically in the next section. This gives an__

approximation to the (k. a, Pa) curve over a particular range. The range of interest here is

0 4 Pa 4 iT.

3.5. Numerical Results for an Infinite Periodic Array of Discontin*4zles

The (k. etar) diagram for an infinite periodic array of discontinuities. as shown in Fig. 3.1(b), is

determined in this section. The basis functions used to approximate the fields in Eq. (3.16) are

taxz A P",(S~w) P,(0,a)

(x-s 12

S.. The computed results for a portion of the (ka , Pei) diagram are shown in Fig. 2 ,ogether with the

fin-line dimensions for this example. The approximation used for the slot fields results in some spuri-

A_4.* ~* a ,%%% % * m .~a,.. .
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FWR j~top bond

Figure 3.5. (k~ oa $a) diagram for a TEM wave in a periodically loaded media.

Yf _
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3.0.

.6-

X 2.0-j

6.6 6.5 I.0 1.6 2.6 2.5 3.6 3.5
bota x alpha

Figure 3.6. Computed (k 0a , not) diagram for fin-line in a WR-28 shield. 11 - 12 3.429 mm 2d
0..254 mm., e,2.22, 2b 2.556nu, w, -0.2 mm w 2 2.0 mm,L 1.0.2 MM4 a

4.4 mm.

N
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ous solutions near Ad a ir and poor sensitivity to discontinuity variations.

3.6. Concludine Remarks

This chapter used a two-dimensional spectral relationship in the fin plane, between the slot

fields and the fin currents. The moment method was then used to solve for the slot fields. Both the

problem of a single step discontinuity and an infinite periodic army of discontinuities were studied.

In the case of the single discontinuity, efficient evaluation of the inner product integrals is important

to minimize computation time.

.5..-

' e5

4Id

%. %" ir

'5,

-q _

°a 5. " 4
.5 5,-.'... . . .; - .. .. -. " ... ,......-, - ' .... L,..' ' ' . !....".. '....," " .. "• •"' ', ' ' ' '"" . ,

_..'i - . - . . - , .ol l . . - , . . _ . _ ,' - . ' . . . . . . . . .. ' .. , .
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CHAPTER 4: ITERATIVE AND VARIATIONAL SOLUTIONS FOR FN-LINE

DISCON'TLNUITIES p

4.1. Introduction

This chapter considers various iterative solutions for the fin-line discontinuity problem. The

discontinuity considered in this chapter is that of Section 3. which is shown again in Fig. 4.1. The

emphasis of this chapter will be on two iterative procedures which are applied to a suitable formula-

tion.

Solution of electromagnetic problems using iterative techniques is advantageous when there are

a large number of unknowns. In fact, when there are a very large number of unknowns, it is the

only way to find a solution. If the number of unknowns is such that the matrix can be inverted on

the computer being used, the moment method may be preferable.

The discontinuity problem is formulated using unknowns in the junction plane, in Section 4.2.

The solution procedure using a conjugate gradient iterative scheme is outlined in Section 4.3. Numeri-

cal results for the conjugate gradient method are given in Section 4A. Solution for the junction plane

unknowns using the generalized variational procedure is outlined in Section 4-5, and numerical

results are given in Section 4.6. Conclusions are drawn in Section 4.7.

42. Formudation using Unknowns In the Junction Plane

A waveguide junction problem can be formulated using the mode functions either side of the

discontinuity [23] Consider the general junction of Fig. 4.2. The transverse field can be expressed in , "."%

terms of the mode functions in guides A and B. Consider I modes

* .*-,.*-..S

. . . . . . . . . . ... ... 5**~~• *5*5'...

. . . . . . . . . . . . . . . . . . . . . . . ... *_
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Figure 4.1. Single step discontinuity in unilateral fin-line.

46
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Guide A S Guide B

Figure 4.2. General junction between two waveguides.
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;.j e~' + ai e z <0
- (4.1a)

hi e' 2  aihK, e z2<0
H, =(4.1b)

Rather than pursuing the regular mode-matching formulation, consider an alternate approach as

follows. Figure 4.3 shows an equivalent representation for the junction, employing equivalent mag-

netic currents over the apertures. The total transverse field for the equivalent problem is

+ dF z <0
(4.2a)

E ,Ag z >0

eh v z + eiO' E Edi hje'y- z <0

H, (4.2b)
b, e2 >0

The fields produced in guide A by K are (K, (),and in guide B by -K are

Rb (K),Rb (K).For continuity ofE,

j; ~ ~ ;x~Ki. 0 = d, zXi4 1

K m2Xb(-k)Izo E Ebi z xiu. (4.3)

* Continuity of Hrequires

7-,
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* pec

Guide A S

pec

p. S ~ Guide B

LFigure 4.3. Equivalent waveguide junction problem.
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2 h. 1  Ed, h + Eb,hw. (A

The solution for the unknowni quantity, k., could be obtained via several numerical approaches.

The solution for k via certain iterative techniques is of interest in this chapter.

g Taking inner products of Eq. (4.3)X and using the orthogonality of Eq. (2.18) with normalized

* mode functions,

ff -x~ ds - d' ff h. F. z ds

ff K~. ds = b, ff RM, .xd

=bt. (4.5)

Substitution for the d's and bVs in Eq. (4.4) results in an integral equation which may be used to

- solve for the unknown operative magnetic current K.

2hKj(xy)m Eh 1 (xy)ffh,, (y) -k (y)d'dy

+ E w(xy) ff i(x',Y)- i(jey)dx'dy. (4.6)

This equation may be interpreted in terms of the Green's function for each guide as follows.

The dyadic Green's function can be found simply from the mode functions using a procedure outlined

in Colln and Zucker (24]. Equation (4.6) can be written as

Pa9
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where 
I..

Y (X~y)

Ii- (4.7)

q la 1ak.

For the fin-line discontinuity of Fig. 4.1, the aperture is the cross-section of the shielding enclo-

sure The number of modes. I.in each guide will be small due to the difficulty of inding a large

number of orthogonal modes.

Following the solution for k, the mode coefficients can be found using Eq. (4.5). The scatteing

parameters can then be determined from these mode coefficients following a re-normalization for unit

power. Assuming that the modes have been normalized for JJ i. X&. ds=1thscteigpr-

eters for the single propagating mode are given by

S1-ff i-k ds k hdl (4.8)
S Jff ,XWgds/2

S. nq E l1ab)

n.5
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4.3. Conjugate Gradient Solution for Unknowns in the Junction Plane

The conjugate gradient method [25H-28] has been in existence for some time. However, it is Only

recently that it has been applied to the solution of electromagnetic problems [271 The method was

developed by Hestenes and Stiefel [251

For n unknowns. the method will converge in n steps, if no rounding-off errors occur. The

method is quite simple. At each step, the estimate is an improvement over the previous step, and the

process can be restarted at any step using the last value as the new initial estimate. a

Consider the linear equation L f =g, where L is a general non-singular matrix. LA L is a

positive definite operator, but is in general non-symmetric. The system L f =g is equivalent to

LALf =LAg. (4.9)

Another equivalent equation, which results in a symmetric, but not a positive definite operator, is

LTLf L Vg. The conjugate gradient technique may be applied to Eq. (4.9). The iterative scheme

is

p. L .

IILAr, 112
a,

I Lpi 11

f =+ f f + 128A

ri+ 1 ,ri -a, Lpi

IILAr +112

IILAr,1 1

pi+I = r,+ + bjp,. (4.10)

The inner products in this scheme are defined such that 11f 112 < f f> and

*<fLf > <LAf~f >.
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An estimate f of the unknown f is used to generate the residual r, and the direction po. In

each cycle, following the determination of the estimate f i, the residual ri and the direction pi, the

next estimates for fi+,rj,9 p,+I are computed. The residuals rr ,"" are mutually orthogonal, and

the direction vectors po,p .," are mutually conjugate, therefore

<rix'i > 0 1 (4.11)

< p ,Lp > 0.

Each estimate fi+1 will be closer to the solution than fi. The norm-squared of the residual can be

used as a measure of the error

erri = lri 112. (4.12)

However, this is not alway reliable, as 11 ri 112 may not decrease at each step.

Consider now the fin-line discontinuity problem of interest, which is shown in Fig. 4.1. This

problem was formulated in Section 4.2. The conjugate gradient method can be applied to Eq. (4.6) to

solve for K(xy). The unknowns are K, and K. over a grid of points in the (xy) plane at z -0.

An (m ,n) set of grid points represents 2mn unknowns. A reasonable approximation for the unk-

nown requires a large number of unknowns.

The inner product for this problem is given by

<x,y > =ff x'y dxdy. (4.13)

4.4. Nwmerk Results for the Conjugate Gradient Solbton In the Junction Plane

The mode functions are found using the procedure outlined in Chapter 2, resulting in

J, (k. ,y), hq. (k1 ,y). For convenience, many of the processes in the iterative routine of Eq. (4.10) are

carried out in the spectral domain. The Fast Fourier Transform is utilized throughout for transfor-

mations in the x-direction. Although there are 2mn total unknowns (for an (m ,n) array of points),
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s0

(m ,n )arrays may be used throughout the computer program.

As indicated in Chapter 2, it is difficult to obtain a large set of orthogonal mode functions for

use in the Green's function. This necessitates computation with as few as three modes.

The limiting case of a uniform slot is a good example to consider first. A relative error will be

used as a figure of merit, where the residual is normalized to the incident field.

Ilri 112 -' "
rel. e;r, 112 (4.14)Ile. 1112

Figure 4.4 shows the results at each iteration using a poor initial estimate of k = = 0 + jO.

Notice the rapid convergence to the solution. This data is for m =17, n 33 w =W2= 1imm and

three modes. There are therefore 1122 unknowns. Using a DEC VAX 11/780 computer, ten itera-

tions using this array size require approximately sixteen seconds cpu time. This time can be reduced

somewhat by using a radix-two FFT and zero padding.

Applying the same procedure to the case of differing slot widths on either side of the junction

does not yield such satisfactory results. Figure 4.5 shows the results for m =17, n =33,

W= Imm, w2 = 2mm and three modes. s goes to one because the iterative scheme finds a solution

which corresponds to a higher-order mode, and is orthogonal to the Green's function modes in one

region. The conclusion is that with the small number of modes which can realistically be found and

the large number of degrees of freedom in the unknown, this approach will not yield satisfactory

results. It is necessary to have the number of unknowns similar to the number of modes in the

Green's function. Similar results are obtained when the number of grid points is quadrupled.

4.5. Solution in the Junction Plane Using the Generalized Variational Technique

The approach presented here also considers unknowns in the (xy) plane of the junction. Again

consider Eq. (4.6), which is of the form Lf = g, where L is an integral operator, f is the unknown,

and g is the known incident field.

[.4-
:;.? -7 "- -" .. .. .. .. .. . .. .. " .. .-" -' '- " " " " ' " " " " " " "-" " " " " 7- 1
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L
L

L

2-

Iteration number

Figure 4.5. Relative error for the conjugate gradient solution of a discontinuity in fin-line with a
WR-28 shield. 11 - 12 - 3.429 mm, 2d - 0.254 mm, e, - 2.22, 2b - 2.556 mm,

W 1mm MMW 2 - 2 mm, f - 30 0Hz, m -17, n - 33. The resultant scattering param-
eters arr.:S 1  1.000 +j 6.487 x 10-3S2 =194 O+I66 0

S 21- -1904x 103 + 1.36 x10.

%-5
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The unknown quantity x may be expressed as a superposition of characteristic functions which

are to bedetermined. fcan be expressed as

f . = (4.15)
=0

* The f, are L-orthogonal, and satisfy

<f~iL =7Lm (4.16)

where 8,,,., is the Kronecker delta function. A suitable set of characteristic functions can be generated

by

= "a ~,,,(4.17)
11 U. 112

where u, is an auxiliary function which satisfies the orthogonality property

* ~<U~ m> Men 8am. (.8

The auxiliary function can be found by

"a U u-I ... Lx,.- 1  (4.19)

where C-

* From Eqs. (4.15) and (4.16),

c,, < f,,k >. (4.20)

* . The generation routine can be summarized as

%:I
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U0

7)n

1f

Un +I1

f"'=11u5.+11 2  ~(.1

The generalized variational technique may also be applied to the equation L A Lf L LA,

* where now the generation routine becomes

- UO

IL ~ ~ f. 1U0112

7= <fJ.LALf.>

<f,,,Ag>

UUn 1+I ,, .LLALf.

15+=+ f.. (4.22)

Th2ese routines can be used to solve for the unknown magnetic current in the junction plane of

the fin-line discontinuity. A good choice for f , is zxi, , where i, I is the incident transverse E-field

made function, with a possble alternative being z X ( i.hI + b I) ThIe coefficients c,, and successive 7]
*characteristic functions f~ are generated by Eq. (4.21) or Eq. (4.22).

4.6. Numerical Results for the Generalized Varkdtonal Solution of the Fin-Line Discontinuity

Problem 
.. !

The results in this section are generated using three modes in the Green's function. Two basis

functions for E, and E. are used to generate the modes. Referring to Eqs. (2.8) and (2.9), theme func-

tions are for p =0, 1 and q =2, 4. It is important to verify that the numerical results satisfy the
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following relationship for the single propagating mode.

tS 1 ,S2 + iS 2 1i2 :1. 4.23

Referring to Eq. (4.21) and Eq. (4.22), Uo is chosen as zXia. Two different unilateral fin-line

geometries are considered. There is a shortage of data from other authors for comparative purposes.

Figures 4.6-4.9 show the computed scattering parameters for a step discontinuity in fin-line

with a WR-28 shield. The equation Lf -g is used with one and two characteristic functions. A

monotonically convergent solution as a function of the number of characteristic functions is not

guaranteed. A comparison with the mode-matching data in [17] is given. However, it appears that

Eq. (4.23) is not satisfied well in [171 so definite conclusions cannot be drawn regarding the accuracy.

A comparison between the equations Lf = g with one and two characteristic functions and the

equation LA Lf = LAg with two characteristic functions is given in Figs. 4.10-4.13.

The scattering parameters for a step discontinuity in fin-line with a WR-62 shield are shown in

Figs, 4.14-4.17. The equation Lf = g is used here. Equivalent circuits for this problem using S1

have been generated by ElHennawy and Schunemann [16] using a mode matching technique. A com- -

parison with these results is given. An indication of the modal solution accuracy and the satisfaction

of Eq. (4.23) cannot be determined from the work of ElHennawy and Schunemann [41 (16 An

approximate convergence criterion for the maximum number of characteristic functions p with q

modes in the Green's function q is p < q -1.

4.7. Concludng Remarks

This chapter considered two procedures for evaluating unknowns in the crom-sectional plane of

the fin-line discontinuity. The scattering parameters, or equivalent circuit for the discontinuity, may

be found from these unknowns.

. The conjugate gradient method was considered first. It did not give satisfactory results for the

discontinuity problem. This was because the number of degrees of freedom in the unknown was

.**N. N*
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6.4 Z Jwar. fns.

* .1

2. 30 .2 3. 3. ..

I Is

froquency Chz)o

Figure 4.6. IS,1 I for a discontinuity in fin-line with a WR-28 shield. 11 12 - 3.429 mm, 2d
0.254 mm, a, .2.22, 2b 2.556 mm, w1 I MmW 2 2 mm.mm 17.,n -33.
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%% _z a h. fns.

C

2.6 3.6 3.2 3.4 3.8 3.6 4.6
XI 16

freoquency Chz)

Figure 4.7. Phase (S 11) for a discontinuity in fin-line with a WR-28 shield. 11 12 3.429 mm
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much greater than terms, or modes, in the Green's function. It is not realistic to find a large number

of modes for the Green's function. The uniform guide solution was reconstructed very efficiently.

The other approach outlined was the generalized variational technique, which involved

representing the junction plane magnetic current in terms of characteristic functions. The routine for

generating these functions and determining their coefficients was outlined. The results using this

approach were satisfactory.

The difficulty of finding an accurate large set of mode functions is a limitation of the approaches

covered in this chapter. For this reason, it is advantageous to look at alternate formulations which do

not require the generation of these mode functions.

Formulating the problem in the fin-plane avoids the need for computing the mode functions.

The Green's function determined in Chapter 2 can be used, as it was in Chapter 3 for the moment

method analysis. The author has investigated several iteration procedures which may be used in con-

junction with such a formulation. This work involved a variant of the Spectral Iterative Technique

(SIT) [29] For guaranteed convergence, it would be advantageous to apply the conjugate gradient

technique to this problem. These approaches are worthy of further consideration.

S.' %

"* .I

W_-...

- . . . . . . . . . . . . .. . i"!



69

CHAPTER 5: DIELECTRIC WAVEGUIDE FILTERS
I

5.1. Introduction

Dielectric waveguide (DWG) filters are of particular interest for millimeter-wave end optical

applications. A number of applications have been reported recently in the millimeter-wave and quasi-

optical areas [30]-(321 and optical grating filters have been reported in [33] Grating-type dielectric

waveguide filters have several advantages over alternative configurations such as the ring-resonator

filter [341 [35] In particular, the ring resonator should be a number of wavelengths in circumference -

for satisfactory performance, which implies closely spaced spurious pass- or stop-bands. The filter can

easily be incorporated into an integrated system and may be realized by a series of discontinuities such

as surface or dielectric variations.

There has been some work done on mode-matching methods [36] in an effort to analyze discon-

tinuities in a two-dimensional dielectric waveguide. It is difficult to apply these techniques to the

analysis of grating iters considered in this chapter. It is proposed that a simple transmission line may

be used to analyze such a grating structure. Experimentation has verified this approach. The theory

developed is valid for a number of dielectric waveguide structures.

Section 5.2 gives details of the theoretical analysis of the dielectric waveguide grating filter.

Experimental results are given in Section 5.3. Conclusions are outlined in Section 5A.

5.2. Analysis of Dielectric Wavegudde Grating Structure

A stepped dielectric grating structure and transmission line model are shown in Fig. 5.1. The

waveguide known as image guide (rectangular dielectric guide on a ground plane) will be considered

specifically, although the approach may be generalized to other dielectric waveguides. It is propmed

that this model may be used for an approximate analysis of the grating filter.

The dielectric waveguide supports hybrid modes which may be expressed as a sum of longitudinal . _

section electric (LSE) and longitudinal section magnetic (LSM) modes. The LSE fields may be expressed

as [14]

... . .. .. ..
S. . . . . . . . . . . .." . .- "
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Figure 5.1. Image guide grating filter and transmission line model.
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E =-j w IA x X fl (5.1a)

and the LSM fields as

E kj][f + V(e-' V*R) (5.2a)

W GJJov X IL (5.2b)

where ][I, and fare the magnetic and electric Hertzian potentials, respectively.

With IlA =; ~(X~y)ei ;#Yh and f,=y,. the dielectric waveguide fields may be

expressed in terms of electric and magnetic scalar potential functions:'

= (Y) IX L~aySh

Y) OX 2,()

ex G= (Y a

OY pOX 8

The effective dielectric constant method (371 [381 is a very suitable approach for finding the propagation

constant in planar dielectric waveguides. Various forms of dielectric waveguides may be analyzed in

this manner. Consider the image guide structure of Fig. 5.2. Using the effective dielectric constant

method and matching the fields in each region, the following eigenvalue equations may be found. The

equation for k. is

4kr k(e, -1) -k 2 cos k,- k, sin k, 1  0 (5.4)

where e, is the relative permittivity of the guide. After Solving for k., the effective dielectric con-
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Figure 5.2. Image guide with coordinate system.
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* stant U,. 2) for region 2 may be found:

*The equation for k., is

[k (4, 2  1) -2kz.in k,,(X 2 -X 1 )+ (5.6)

+2k rk e(e -I) -k,2cos k 2x 1 0i.

Thus the guide propagation constant becomes

=I. 2 f-k. (5.7)

The dominant mode will be considered in the following analysis. The waveguide characteristic

impedance mar be defined as

where ko are the free-space wave impedance and propagation constant, respectively.

In order to find the filter transfer function, consider the unit cell shown in Fig. 5.3. The ABMD

matrix for the unit cell may be obtained by multiplying the matrices for two line sectionas [39]. The .-

unit cell matrix is

c=-"- IG Co S ING (5N9

D 1 cos(coc(Gc~) -Gsin( + ± Sin(PG G CS N G ) N

........................ . .. . .. .

C -L .iP G ON (P IX + PN Cos............(PG ING ....

*,n .. k . op'*. . * *. t - *.
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Figure 5.3. Unit cell in transmission line model.
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The ABCD matrix for a grating structure of n unit cells is obtained by raising the matrix for a single

cell to the nth power.

The transducer loss ratio is given by (39]

P 4 AR + D )2 + (5.10) r
PAR.D&U+B+Ck RLj12

PL 4& RL

where PL is the power delivered to RL and P, -- I V9 12/4& is the available power from the genera-

tor. This results in a method for computing the filter insertion loss (PL /P.,) as a function of fre-

quency. Although this technique is approximate, the response predicted from such an analysis agrees

well with measurements.

Fields in a periodic structure can be expressed in terms of spatial harmonics, according to Floquet's

Theorem [19] The propagation constants are

.= Po+ 27, n ffi0,+±I.±,+ (5.11) -.

where d is the grating period. It is useful to look at the dispersion curves on a k od d-diagram, such

as Fig. 3.6. Coupled mode theory may be used to explain the filter characteristics. There is a stop band

when

Pd =ir (5.12)

where P is the propagation constant in the grating. At this frequency there is coupling between the

spatial harmonics (Ad+ and (o1). which propagate in opposite directions. The waves are guided by

the structure (slow-wave region). The grating exhibits a reflection coefficient close to one in the stop-"

band, and close to ram on either side.

Consider ports n and n+l in the unit cell of Fig. 5.3 when the cell is part of an infinite periodic

structure,

* ~:1=~~::1=. V:~J.(5.13) C-.,.

.1 ..
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For a lossless reciprocal network (401

cos 0 d A+D (5.14)2

The following relationship may thus be derived

c0 d =cos C cos BJ3C (d -I)-C(5.15)

For a particular d/, the requirefnd from eq. (5.15) once the propagation constants PC

and AG for a uniform guide have been found from Eqs. (5.4)-(5.7).

5.3. Results and Discussion

Filter designs and response predictions were achieved using the procedures outlined in Section 5.2

with the aid of computer programs.

A scaled image-guide fiter was built and tested in the X-band frequency range. The predicted

and measured insertion loss responses and the dimensions are shown in Fig. 5A. Rexolite 1422 was used

as the dielectric, due to its favorable electrical and mechanical qualities. To enable testing with a net-

work analyzer system, a suitable transition between metal waveguide and DWG is necessary. The

transition used consists of a horn and an H-plane tapered section of DWG. This has been shown to act

as a low-loss transition.

The predicted response is for matched loads at midband. (Maximum ripple across the band due to

mismatch is less than I dB). Equation (5.14) predicts the lower edge of the stop-band, so a slight

adjustment is necessary to obtain a required center frequency. The measurements agree quite well

with predictions. Measured data in the 11 - 12 GHz range deviated from the predicted response. This

deviation was due to radiation in this frequency range. It is generally accepted that grating-type

slow-wave DWG structures have some inherent radiation problems. However, the radiation region

may not cause a problem and could possibly be eliminated by tapering the steps at the ends of the

structure [40 Increasing the number of sections or the step size increases the stop-band insertion loss.

St.''
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There are a number of interesting filter structures which employ gratings. These include:

(i) stagger-tuned grating sections in series to realize a low-pass or large stop-band band-reject filter

(Fig. 5.5(a))

(ii) grating with coupler (Fig. 5.5(b)). The forward coupler action couples the reflected power from

the grating to achieve a band-pass response between parts I and 2

(iii) tapering in the grating to obtain an equal-ripple response. The realizable Ac; limitsthis.

A simple yet effective means of analyzing dielectric waveguide grating filters has been presented.

Experimentation has verified the theoretical analysis. This technique thus becomes a useful design tool

which is applicable to many forms of periodic and non-periodic guided wave structures.

de-
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*Figure 5.5. (a) Series stagger-tuned grating filter, (b) filter consisting of grating with coupler.
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Chapter 6: CONCLUSION

Several millimeter-wave waveguide problems have been investigated. These problems involved a

single or a series of discontinuities in fin-line and dielectric waveguide.

The uniform fin-line was analyzed in chapter 2. The problem was formulated in the spectral

domain, and a numerical solution was obtained using the moment method. Results for the propagation

constant, characteristic impedance and mode functions were given.

A two-dimensional spectral relationship in the plane of the metal fin was used to formulate the

discontinuity problem in chapter 3. A single and an infinite periodic array of discontinuities were stu-

died. The numerical solution was obtained by using a moment method. Results for the single discon-

tinuity analysis and the dispersion curve for an infinite periodic array of discontinuities were given. In

the case of the single discontinuity, efficient numerical evaluation of a number of integrals was impor-

tant. Stability of the solution with respect to variations in the approximating functions was a prob-

lem.

In chapter 3 the fin-line discontinuity problem was formulated with unknowns in the transverse

plane of the junction. Two numerical procedures were used to solve for these unknowns. The first, the

conjugate gradient method, could solve the uniform problem well but would not converge to the

correct solution in the case of the discontinuity. The correct solution was not obtained because the

number of degrees of freedom in the unknown was greater than the number of terms possible in the

Green's function. The second approach involved a use of the generalized variational procedure, which

represented the unknown in terms of characteristic functions. Satisfactory results were obtained with

this approach.

A rectangular dielectric image guide grating filter was analyzed in chapter 5. The effective dielec-

tric constant method in conjunction with a transmission line model was used. Satisfactory agreement

between theory and experiment, for the insertion loss, was obtained.

%% %

,,- .-.: - ., . - . - .. .,- - ,. ..-, - ,. .-. - .. .- .- . ..- .,- . -% - ... -. - ..% % ., ,. , . ., . ., ,. . .. . -, .. - .. . , - -. . ., . .. , -. , . ,'-.. -

o. - • * - . - -. % Oo % .•. - . -. -- °. . ° -. -o . " =% .% ° °° °% ".. .% % " , • . °. o - - . - -o . .. . % - =° % * o -

• , % " .=.• •% . 5 .' .
%

•.. . . . .*,• -*., ,' m =- _ , }% % .. - , % . • • . .... ..



REFEMENCES

[1] *Special issue on solid-state, microwave/millimeter-wave power generation, amplification and
control," IEEE Trans. Microwave Theory Tech., vol. Mfl-27, May 1979.

[2] *Special issue on microwave and millimeter-wave integrated circuits,: IEEE Trans. Microwave
Theory Tech., vol. MIT-26, Oct 1978.

[3] P. Meier, *Integrated fin-line millimeter components" IEEE Trans. Microwave Theory Tech,
vol. MTI'-22, pp. 1209-1216, Dec. 1974.

[4] H. E Hennawy and K Schunemann, "Computer-aided design of fin-line detectors, modulators
and switchms, Arch. Elek. Ubertragung. vol. 36,pp. 49-56, Feb. 1982.

[5] F. Arndt. J. Borneinann, D. Grauerholz, and R. Vahildieck, "Theory and design of low-insertion
lowe fin-line filters:" IEEE Trans. Microwave Theory Tech, voL MT-30, pp. 155-162, Feb.
1982.

[6] Y. Shih, T. Itoh, and L Bui, "Computer-aided design of millimeter-wave E-plane filters" IEEE
Trans. Microwave Theory Tech., vol. MIT-31, pp. 135-141, Feb. 1983.

[7] H. El Hennawy and K. Schunemann. *Hybrid fin-line matching structures" IEEE Trans.
Microwave Theory Tech., vol. MIT-30, pp. 2132-2138, Dec. 1982.

(8) J. Knorr and P. Shayda, *Millimeter wave fin-line characteristics" IEEE Trans. Microwave
Theory Tech. vol. MT'-28, no. 7, pp 737-743, Jul. 1980.

(9] L Schmidt and T. Itoh, *Spectral domain analysis of dominant and higher order modes in fin
lines," IEEE Trans. Microwave Theory Tech., vol. MTI1-38, no. 9, pp. 981-985, Sep. 1980.

[10] L Schmidt, T. Itoh, and H. Hofmann, "Characteristics of unilateral fin-line structures with arbi-
trarily located slots," IEEE Trans. Microwave Theory Tech, vol. MIT-29, no. 4. pp. 352-355,
Apr. 1981.

[11] J. BrianDavies and D. Mirshekar-Syahkal, *Spectral domain solution of arbitrary coplanarP'
transmission line with multilayer substrate:" IEEE Trans. Microwave Theory Tech., pp. 143-
146, Feb. 1977.

[12] T. Itoh, "Spectral domain immitance approch for dispersion characteristics of generalized printed
transmission lines: IEEE Trans. Microwave Theory Tech, vol. MTlT-28, no. 7, pp. 733-736,
JUL 1980.

[13] IL Januen, *Unified user-oriented computation of shielded, covered and open planar microwave
And millimeter-wave transission characterstics" IEE Proc. Pt. H, Microwaves Opt. Acoutst,
VOL MOA 1, pp. 14-22, 1979.

(14] R. Collin, Field Theory of Guided waves. New York, NY: McGraw-Hill. 1960.

AP ......................................



82

[15] J. Wilson, -Analyuis of fin-line at millimeter wave~engths." M.S. Thesis, University of J11inois,

1982.

[161 H. El Hennawy and K. Schunemann, "Impedance transformation in fin-lines, lEE Proc. Pt. H,
Microwaves Opt. Acoust., vol. 129, pp. 342-350, Dec. 1982.

[171 X. Helard, J. Citerne, 0. Picon, and V. Fouad Hanna, in-line," Electron. Lett. vol, 19, pp. 537-
539, 7th. Jul 1983.

[i8] T. Kitazawa and X. Mittra, "An investigation of striplines and filies with periodic stubs,"
IEEE Trans. Microwave Theory Tech. vol. NMr-32, pp. 684-88, Jul. 1984.

[19] R. Mittra and S. Lee, Analytical Techniques In the Theory of Guided Waves. New York, NY:
Macmillan. 1971.

[201 R. Colln and F. Zucker, Edls., Antenna Theory. New York, NY-. McGraw-HiLl, 199 Pt 2, Chap.
19.

[211 P. Davis and P. Rabinowitz, Methods of Numerical Integration. New York, NY. Academic
Press, 1975.

[221 W. Ko, V. Jamnejad, R. ira, and S. Lee, "Radiation from an open-ended waveguide with beam
equalizer- a spectral domain analysis:" IEEE Trans. Antennas Propagat.. vol. Ap-30, pp.44-52,
Jan. 1982.

* [231 IK Auda and R. Harrington, "A moment solution for waveguide junction problems," IEEE
Trans. Microwave Theory Tech., vol. MTT-31, pp. 515-519, Jul. 1983.

[241 L. CD11in and F. Zucker, Ed.., Antenna Theory. New York, NY: McGraw-Hill, 1969, Pt. 1, Chap
14.

[25] X~ Hestenes and E Stiefel, "Miethods of conjugate gradients for solving linear systems," Journal
Res. Nat. Bur. Standards, vol. 49, pp. 409-436,1952.

[261 IL Schwarz., 11 Rutishauser, and E Stiefel, Numerical Analysis of Symmetric Matrices. Engle-
wood Cliffs, NJ: Prentice Hall, 1973.

[27] P. Van Den Berg, "Iterative computational techniqus in scattering baned upon the integrated
square error as criterion." Proc. 1983 URSI Irt. Symp. on Electromag. Thry, Spain. pp. 97-100,
Aug. 1983.

[28] T. Sarkar, K. Siakiewicz, and L. Stratton, "Survey of numerical methods for solution of larg
systemof linear equations for electromagnetic field problems, IEEE Trans. Antennas Pro-
pa gat . vol. Ap-29, pp.8$47-W5, Nov. 1981.

(291 C. Two a&d L. Mlttra, "A spetral iteration approach for analyzing scattering from frequency
-- selective surfaces" IEEE Trans. Antennas Propagat, vol. Ap-30, pp. 303-308, Mar. 1983.



83

[30] T. Rtoh, "Application of gratings in a dielectric waveguide for leaky-wave antennas and band-
reject filters" IEEE Trans. Microwave Theory Tech, vol. MTF-25, pp. 1134-1138, Dec. 1977.

[31] B, Song and T. Itoh, "Distributed bragg reflection dielectric waveguide oscillators," IEEE Trans.
Microwave Theory Tech, vol. MTF-27, pp. 1019-1022, Dec. 1979. .

(32] T. Itoh and F. Hsu, "Dstributed bragg reflector Gunn oscillators for dielectric millimeter-wave
integrated ciruits" IEEE Trams Microwave Theory Tech, vol. M7T-27, pp. 514-518 ?ay
1979.

[33] L Schmidt, D. Flanders, C Shank, and R. Standley, "Narrow-band grating filters for thin-film
optical, waveguides, Appi. Phys. Lett, vol. 25, pp. 651-652 Dec. 1974.

[34] J. Itanami and S. Shindo, OChannl dropping filter for millimeter-wave integrated circuits"
IEEE Trams. Microwave Theory Tech., vol. AM-26, pp. 759-764, Oct. 1978.

[35] 3. Kietze, A. Kaurs, and B. Levin, *A V-band om nctintrasmitter and receiver system
uigdielectric waveguide integrated circuits" IEEE Trans. Microwave Theory Tech, vol.

M37-24, pp. 797-803, Nov. 1976.

136] T. Rozzi and B. In't Veld, "Field and network analysis of interacting step discontinuities in
planar dielectric waveguides, IEEE Trans. Microwave Theory Tech, vol. M'fl-27, pp. 303-
309, Apr. 1979.

[37] IL Knoi and P. TWulos "Integrated circuits for the millieter through optical frequency rang,
Symp. oa Submillimer Waves, Polytechnic Insttute of Brooklyn, NY, Mar. 31,1970.

[38] W. McLevige, T. It*h and L. Mlttra, "New wavegulde sturctures for millimeter-wave and opti-
cal integrated circuits, IEEE Trans. Microwave Theory Tech, vol. hM -23, pp. 7W8794, Oct.
1975.

(391 G. Mattbaei, L Young. and E. James, Microwave Fiters, Impedance Matching Networks and
Couplng Structures. Dedham. MA. Artech House, 1980. ...

[40] L. Collin, Foundations of Microwave Engineering. New York, NY: McGraw-Hill, 1966, Ch. 8.

4P.



II

; . 4

~ .7T

4e ~ .

-41


